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e Motivation

— Small sat manuevability

— Mass, volume, power
challenges with Smallsat

* Benefits
— No Spacecraft Power!

— Direct Energy
Conversion Solar-to-
Propulsive Thrust

— Minimal Mass/Volume
Requirement: ~1% of
Cubesat
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 Main Question: Is plasmonic propulsion feasible/
beneficial for nano/picosatellite applications?

* Objective: Evaluate position and pointing control
resolution for a cubesat

 Approach

Plasmonic Force
Field Predictions
~Uses our existing

plasmonics model
~Studies: Used In

-Gradient geometry >
-Gradient angle
-Solar light effects
-Nanoparticle mass

effects

Propulsion Performance
Predictions

-First order principles

-Predicts thrust, Isp

-Incorporates:

-Nonlinear force profile

-Nanoparticle mass

-Variable acceleration
distance

-Nanoparticle expulsion
rate

Used In

Mission Context
Assessment
-Precision pointing
control system context
-Predicts control resolution
and pointing precision
-Based on similar analyses
for LISA, GOCE, and
ExoPlanetSat
-Comparison with SoA

reaction wheels, collogd Eﬂ
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3D-Schematic of Nanostructure Sim Volume 2D-Schematic of Nanostructure

Asymmetric nanostructures have been designed to achieve
the strongest resonance in solar light varied wavelength to
obtain the gradient electric field and generate the strong
optical force in order to propel nanoparticles .
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* Transmission spectra show strong coupling resonance at the

solar light wavelengths

* Nanostructures that accelerate and expel nanoparticles:

— Decreasing the width of trapezoid leads to resonance at shorter

wave

— 500nm (Width: 50nm)
— 800nm (Width:100nm)
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Unique Nanostructures

— Resonate with desired
wavelengths in broadband

— Force profile magnitudes
altered by solar intensity

— Utilizes most intense band
of solar emission spectra
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Focused Broad Band Solar Light

> Layers

Longer wavelength light passes through and
absorbed at lower layers

Nanoparticles accelerated through each “tube” by layers above and below

e Plasmonic Force Thruster Device
— Three layers of ~1000 ‘tubes’ to support and channel
— Nanoparticles feel forces from above and below each tube
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* On-Off ACS Model
— Simple First-Principles Analysis
— Quickly Compare SoA Thrusters/Torquers Control Authority
— Pointing and Positioning Accuracy

* Cubesat RCSs compared using following assumptions
— Attitude constantly known with zero error
— Minimum 1mpulse bit for each thruster has no variation.
— Solar radiation pressure 1s only disturbance
— Solid 1U cube sat with 2 kg mass

10
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On-Off ACS Algorithm
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-CubeSat with plasmonic thrusters
holding 10-® degree pointing accuracy

-With 50g of propellant this accuracy
could be held for ~500 days
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| Thruster Type Plasmonic nCAT Electrospray
Propulsion

Thrust (N) 1.6x10° 1x10 1x10
Isp (s) 100 3000 2500-5000
Switching time(ms) 1 10 1
Pointing accuracy (deg) 1x103 1x104 1x10
Position accuracy (m)  1x10-!! 6x108 6x10-10
System mass (g) ~50 200 ~300

Power (W) ~0 0.1-6 10 13
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e NASA Interaction

— Ames: Lead for Small Spacecraft
— Mission Design Division
 Division Chief: Dr. Chad Frost

 Chief Technologist: Dr. Elwood Agasid

* Conduct early-stage concept development and
technology maturation supporting the Center's space
mission proposals

 Facilities and software for rapid mission development
and analysis. Experts covering the domains required to
fully develop successful spacecraft mission concepts

14
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e Raise TRL 2 to 3

* Experimentally Demonstrate Nanoparticle
Propulsion

— Fabricate single, multi-stage asymmetric
nanostructures

— Characterize transmission spectra, characterize
nanoparticle motion

— Compare experiment with model predictions

— Update propulsion predictions, Smallsat

controllability predictions
15
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 Device fabrication facilities

Lasers Microscope Spectrometer
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e Main Question: Is plasmonic propulsion feasible for
nano/picosatellite applications?

— Still to be finalized, but appears promising

* Nanostructures that produce fields for expelling
nanostructures are possible

— Can also be designed with narrow band in solar spectrum,
1.e., 40nm FWHM for 500nm resonance

e Optimum Use of Solar Light and Useable Thrust Requires
Multi-stage, Layered, Arrays

« NASA Ames wants to work with us
* Phase Il — we have the capability to Raise TRL 2 to 3

— Facilities, equipment to fabricate, test nanostructures 17
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